Procedures for using PepQuery

Contents

1	Intro	oduction	1
2	Requ	uired resources	1
	2.1	For web server	1
	2.2	For standalone version	2
3	Usin	g the web server version of PepQuery	2
	3.1	Taking a novel peptide as input	2
	3.2	Taking a novel protein sequence as input	6
	3.3	Taking a novel DNA sequence as input	7
4	Usin	g the standalone version of PepQuery	8
	4.1	Taking a novel peptide as input	10
	4.2	Taking a novel protein sequence as input	10
	4.3	Taking multiple peptide sequences as input	10
	4.4	Taking VCF/BED/GTF as input	13
5	Арре	endix	14
	5.1	A novel peptide	14
	5.2	A novel protein	14
	5.3	A novel DNA sequence	14

1 Introduction

PepQuery (<u>www.pepquery.org/</u>) is a peptide-centric search engine for novel peptide identification and validation. It is available as a standalone application as well as a web-application. Users can find the detailed procedures for using PepQuery in this document. Completing all examples will take about less than 45 minutes.

2 Required resources

2.1 For web server

Web server address: <u>http://pepquery2.pepquery.org/</u>. Input data for testing: please find the input sequences data in <u>appendix</u> section. Support web browser:

Windows: Google Chrome 56.0 or later, Internet Explorer 10.

<u>Mac</u>: Google Chrome 56.0, Safari 10.0 or later. We strongly recommend upgrading to the latest version of the supported browsers.

2.2 For standalone version

Software download: please download the latest version of PepQuery: http://pepquery.org/data/PepQuery_v1.0.0.tar.gz. Java version: 1.8 or later OS: Windows, Linux and Mac OS Hardware: 2 CPUs (more is better), 4 Gb memory Input data for testing: The testing data is included in the software package (http://pepquery.org/data/PepQuery_v1.0.0.tar.gz).

3 Using the web server version of PepQuery

3.1 Taking a novel peptide as input

1. Open the web server: <u>http://pepquery2.pepquery.org/</u>. The web server looks like below:

2. Set parameters. Please find detailed description of each parameter in the website of PepQuery: http://pepquery.org/document.html . Please set all the parameters like below:

Please select "Yes" for unrestricted modification filtering so that unrestricted modification filtering is used.

The MS/MS dataset used in this testing is a large-scale colon tumor dataset which contains MS/MS data from 95 colon tumor samples. This MS/MS dataset contains 12,941,421 MS/MS spectra. Please go to this web page to find more information about this dataset if interested: http://www.pepquery.org/document.html#webdataset.

3. Click "Start" to submit the task. Analysis will be completed in about 30 seconds, and the search result will look like below:

PepQuery, a peptide-centric se	earch engine fo	r novel pep	tide sea	rching.	≡					
MS/MS dataset: 🚯	_									
cptac_colon_2014_nature 🔹	Identification o	verview								
	MS/MS searching pa	arameters:								
Target event: 6				parameter		value				
Peptide sequence 🔹			1	Enzyme		Trypsin				
			2	No. of misse	d cleavages	2				
Input peptide sequence 🚯			3	Fixed modif	ications	6				
LVVVGADGVGK			4	Variable mo	difications	107				
			5	Peptide tol.	±	20 ppm				
Reference database:			6	MS/MS tol. ±	:	0.5 Da				
nature2014_RefSeqDB										
Scoring algorithm: A	Identification re									
	The identification re	esult is presented	in the below	v table:						
hyperscore	Show 10 🔻 entr	ies					Sea	arch:		
Unrestricted modification filtering:	peptide 🔶	modification 🔶	n 🔶 spect	rum 🔶 samp	le_name 🔶	charge 🔶	exp_mass	¢ ppm ♦	pep_mass 🔶	mz
🗢 Yes 🌑 No	1 LVVVGADGVGK		84 23981	. TCGA-	AG-A00Y	2	1012.58	7 4.748	1012.592	507.301
	2 LVVVGADGVGK	-	84 30908	TCGA-	AA-A01R	2	1012.59	5 -3.389	1012.592	507.305
Start	3 LVVVGADGVGK		84 20351	TCGA-	AA-A02O	2	1012.60	0 -7.789	1012.592	507.307
	4 LVVVGADGVGK	-	84 20415	TCGA-	AA-A02O	2	1012.59	2 -0.737	1012.592	507.303
	Showing 1 to 4 of 4	entries						Prev	ious 1	Next
	4						Sat is ri	Dec 9 14: unning	13:28 2017 -> Yo	ourtask, ^
	Download the ident	ification result:								~
	🛓 Download						Sat	Dec 9 14: gratulatio	13:42 2017 -> ons. Your task is	ŝ
							fini	shed! Nov	v you can go to	te result
	Coostrum oppo	tation					pag	e to see ti	he result.	

4. From the result page, users will find a table listing a total of 4 spectra with confident match (p-value <= 0.01 and n_ptm = 0, n_ptm is the number of better matched modification peptides when performing the unrestricted modification searching.) to the input novel peptide. If the value in the column of "Confident" is "Yes", it means that the identification is confident with cutoff of p-value <= 0.01 and n_ptm = 0. Users can download the identification result table by clicking the "Download" button. When users click a row in the table, the annotated spectrum of this peptide-spectrum match (PSM) will be shown in the "Spectrum annotation" panel as shown below:</p>

Click the "Download" button in this panel will download the MS/MS spectrum of this match in MGF format. Click the camera button as shown below will download the annotated spectrum in the png format:

Sample information for the identified spectra can be found in the panel of "Sample information" as shown below:

	ID	TCGA participant ID	Gender	Cancer	Histological.type	Tumor.site	Anatomic.orgai		
1	TCGA-AG-A00Y-01A-12	TCGA-AG-A00Y	Male	Rectum	Rectal Adenocarcinoma	4 - rectum	Rectum		
4							Þ		

3.2 Taking a novel protein sequence as input

Please use the protein sequence in appendix section as an example. Because the input is a protein sequence, so users need to select the "Target event" as "Protein sequence". Actually, after users set the value of "Target event" as "Protein sequence", the default sequence in the "Input protein sequence" is the testing novel protein sequence used in this document. After setting the parameters as shown below, a click on the "Start" button will submit the job. Please make sure that the value for parameter "Unrestricted modification filtering" is set as "Yes".

The job will take about 3 or 4 minutes. The result page will look like below. In total, 35 PSMs are identified, including 26 confident PSMs corresponding to 3 unique peptides (MGAQELLR, VFHELTQTDK and VENILLHDRK, highlighted in green color) and 9 PSMs that are not confident matches. The cutoff here is the same with the previous section (p-value <= 0.01 and n_ptm = 0).

IS/MS dataset: 🛛 🤅	•									
cptac_colon_2014_nature 🔹	Ide	entification	overview							
	MS	/MS searching	parameters:							
arget event: (2			I	parameter	value				
Protein sequence 🔹				1 E	Enzyme	Trypsin				
				2 1	No. of missed cleavage	3 2				
put protein sequence 🤅	3			3 F	ixed modifications	6				
LHQCKTPIIHRDLKVENILLHDRKVFHELTQTDI	< 2			4 \	/ariable modifications	107				
MGAQELLR	4			5 F	Peptide tol. ±	20 ppm				
				6 1	4S/MS tol. ±	0.5 Da				
nature2014_RefSeqDB 💌	lde	entification	result							
nature2014_RefSeqDB	Ide The She	entification e Identification pw 10 • ent	result result is presented in the belo t ries	ow ta	able:			Search:		
nature2014_RefSeqDB coring algorithm: HyperScore	D The She	entification e identification ow 10 r ent peptide	result result is presented in the belo tries modification	ow ta	able: • spectrum \$ sampl	e_name ≑	charge ≑	Search: exp_mass ≑	ppm \$	pep_mas:
nature2014_RefSeqDB	D The She	entification e Identification ow 10 • ent peptide VFHELTQTDK	result result is presented in the bek rries modification \Rightarrow	ow ta n (63	bble: spectrum ∲ sampl 23321 TCGA-	e_name ≑ \A-A000	charge ≑ 3	Search: exp_mass ≑ 1216.614	ppm ≑ -4.000	pep_mas 1216.4
nature2014_RefSeqDB ▼ oring algorithm: yperscore restricted modification filtering: Yes ● No	Ide The She 1	entification a Identification ow 10 v ent peptide VFHELTQTDK MGAQELLR	result result is presented in the bel tries modification	ow ta n 4	able: spectrum ∳ sampl 23321 TCGA- 3444 TCGA-	e_name ≑ \A-A000 \A-A01R	charge \$	Search: exp_mass ≑ 1216.614 916.484	ppm ≑ -4.000 -4.039	pep_mas 1216,4 916,4
ature2014_RefSeqDB	Ide The Shu 1 2 3	entification eldentification ow 10 T eni peptide VFHELTQTDK MGAQELLR MGAQELLR	result result is presented in the bel rifes modification	ow ti n = 63	spectrum ÷ sampl \$ 23321 TCGA- \$ 844 TCGA- \$ 949 TCGA-	e_name ≑ \A-A000 \A-A01R \A-A00A	charge ⇒ 3 2 2	Search: exp_mass 1216.614 916.484 916.481	ppm ≑ -4.000 -4.039 -1.508	pep_mas 1216.4 916.4 916.4
oring algorithm: HyperScore Ves No Start Storp Stor	lidd The Sho 1 2 3 4	entification e Identification ow 10 T enti peptide VFHELTQTDK MGAQELLR MGAQELLR MGAQELLR	result result is presented in the below rrries modification	ow ta n = 63 49 49	spectrum sampl 2 23221 TCGA- 2 3844 TCGA- 2 949 TCGA- 2 887 TCGA-	e_name ≑ \A-A000 \A-A01R \A-A00A \A-A00A	charge ∳ 3 2 2 2 2	Search: exp_mass ≑ 1216.614 916.484 916.483 916.483	ppm ≑ -4.000 -4.039 -1.508 -2.973	pep_mas 1216.0 916.0 916.0
ature2014_RefSeqDB	lidd The Shu 2 3 4 5	entification i Identification i Identification i Identification peptide peptide VFHELTQTDK MGAQELLR MGAQELLR MGAQELLR	result result is presented in the bek modification	ow ta n = 63 49 49 49	spectrum (sample 2 23221 TCGA, 3 3844 TCGA, 4 949 TCGA, 6 887 TCGA, 12 121545 TCGA,	e_name ≑ \A-A000 \A-A01R \A-A00A \A-A00A \A-A00A	charge 3 2 2 2 2 2	Search: exp_mass ≑ 1216.614 916.484 916.483 916.483 916.486	ppm ≑ -4.000 -4.039 -1.508 -2.973 -6.370	pep_mas 1216.4 916.4 916.4 916.4
asture2014_RefSeqDB	1 Ida 5 The 5 Sha 2 3 4 5 6	entification w 10 v entification peptide VFHELTQTDK MGAQELLR MGAQELLR MGAQELLR MGAQELLR	result is presented in the bek rries modification	ow ta n = 653 499 499 499 499	spectrum sample 23221 TCGA. 3844 TCGA. 949 TCGA. 887 TCGA. 12545 TCGA. 149458 TCGA.	e_name ∳ KA-A000 KA-A01R KA-A00A KA-A00A KF-2692 KF-3913	charge ∳ 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Search: exp_mass \$ 1216.614 916.484 916.481 916.483 916.483 916.486 Sat Dec 9 16:19:	ppm ≑ -4.000 -4.039 -1.508 -2.973 -6.370 12 2017	pep_mas 1216./ 916./ 916./ 916./ 916./
nature2014_RefSeqDB	1 Idd The She 1 2 3 4 5 6 7	entification e Identification pow 10 • ent peptide VFHELTQTDK MGAQELLR MGAQELLR MGAQELLR MGAQELLR MGAQELLR	result is presented in the bek rries modification \Rightarrow - - - - - - - - - - - - -	ow ta n = 63 49 49 49 49 49 49 49 69	spectrum () sample 2 23221 TCGA, 3844 TCGA, 849 TCGA, 2 32154 TCGA, 3 121545 TCGA, 3 121545 TCGA, 3 121545 TCGA, 3 121545 TCGA,	e_name \$ \A-A000 \A-A01R \A-A00A \A-A00A \A-A00A \AF-3913 \A-A01R	charge 3 2 2 2 2 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	Search: exp_mass ≑ 1216.614 916.484 916.483 916.483 916.485 Sat Dec 916:193 s running	ppm \$ -4.000 -4.039 -1.508 -2.973 -6.370 12 2017 - -1.176	pep_mas 1216./ 916./ 916./ 916./ 916./ 916./ 916./ 916./
oring algorithm: C HyperScore Ves No Start No	Idd The Shu 1 2 3 4 5 6 7 8	entification identification (10 •) ent peptide = VFHELTQTDK MGAQELLR MGAQELLR MGAQELLR MGAQELLR MGAQELLR	result is presented in the below rices modification	ow ta n = 63 49 49 49 49 49 49 49 49 49 49	spectrum (* sample spectrum (* sample 32321 TCGA- 3844 TCGA- 949 TCGA- 867 TCGA- 921545 TCGA- 921645 TCGA- 9211 TCGA- 9212 TCGA-	e_name ↓A-A000 ↓A-A01R ↓A-A00A ↓A-A00A ↓F-2692 ↓F-3913 ↓A-A01R ↓G-3574	charge 🖗	Search: exp_mass = 1216.614 916.484 916.484 916.483 916.483 916.486 Sat Dec 9 16:19:5 s running Sat Dec 9 16:222	ppm ≑ -4.000 -4.039 -1.508 -2.973 -6.370 12 2017 -1.176 35 2017	pep_mass 1216.6 916.4 916.4 916.4 916.4 916.4 916.4 916.4

3.3 Taking a novel DNA sequence as input

Please use the DNA sequence in appendix section as an example. Because the input is a novel DNA sequence, so users need to select the "Target event" as "DNA sequence". Actually, after users set the value of "Target event" as "DNA sequence", the default sequence in the "Input DNA sequence" is the testing novel DNA sequence used in this document. After setting the parameters as shown below, a click on the "Start" button will submit the job. Please make sure that the value for parameter "Unrestricted modification filtering" is set as "Yes". Selecting 0 for "Frame" means translating the DNA sequence with the longest frame.

The job will take about 2 or 3 minutes. The result page will look like below. Several matches can be found but none of them are confident matches. The cutoff here is the same with the previous section (p-value <= 0.01 and n_ptm = 0).

PepQuery, a peptide-centric sear	ch engine for n	ovel peptide sea	rching. ≡			
MS/MS dataset: 0						
cptac_colon_2014_nature 🗸						
	/IS/MS searching param	eters:				
Target event: 0			narameter	value		
DNA sequence 🗸		1	Enzyme	Trypsin		
		2	No. of missed cleavages	2		
Input DNA sequence 🚯		3	Fixed modifications	6		
GAGCCCAGGAGTTTGAGGCTGCAGTGAGTTGT		4	Variable modifications	107		
GAGTCCAGCCTGGGTGACAGAGTGAGACACTG		5	Peptide tol. ±	20 ppm		
		6	MS/MS tol. ±	0.5 Da		
Frame:						
	dentification resul	lt.				
Reference database: 0	dentineation resul					
nature2014_RefSeqDB	he identification result	is presented in the belov	vtable:			
	show 10 ▼ entries				Search:	
Scoring algorithm:	peptide	🔶 modi	fication		\$	$\mathbf{n} \doteqdot$
HyperScore	1 TASCSVAQAGVQWCI	DLGSLQPPFSEFKR Carba	amidomethylation of C@4	[57.0215];Carbam	idomethylation of C@14[57.0215]	32
	2 TASCSVAQAGVQWCI	DLGSLQPPFSEFK Carba	amidomethylation of C@4	[57.0215];Carbam	idomethylation of C@14[57.0215]	188
Unrestricted modification filtering:	3 EISHPNSEIFFFFK	-				72
O Yes ● No	4 EISHPNSEIFFFFK	-				72
	5 RFCLSLPSSWDYR	Carba	amidomethylation of C@3	[57.0215]		163
Start Stop	6 RFCLSLPSSWDYR	Carba	amidomethylation of C@3	[57.0215]	Sat Dec 9 16:33:53 2017 -> Your	tašk [×]
	7 EISHPNSEIFFFFK	-			is running	72
5	showing 1 to 7 of 7 entri	es			Sat Dec 9 16:35:21 2017->	ext ×
	4				Congratulations. Your task is finished! Now you can go to te r	tuso
	ownload the identifica	tion result:			page to see the result.	Count

4 Using the standalone version of PepQuery

We recommend users to test the standalone version in Linux system. However, it should work in Windows. After download the standalone version of PepQuery from this link: http://www.pepquery.org/data/PepQuery_v1.0.0.tar.gz, please unzip it to a folder: In Linux system, users can use the following command line to unzip:

tar xvzf PepQuery_v1.0.0.tar.gz

Then the folder of "PepQuery_v1.0.0" looks like below:

|-- example/

- | |-- create_proteindb_index.sh
- | |-- iPRG2015/
- | | |-- iPRG2015_no6.fasta
- | | |-- JD_06232014_sample1-A.mgf
- | | `-- peplist.txt
- | |-- run_input_a_peptide.sh
- | |-- run_input_a_protein.sh
- | |-- run_input_peptidelistfile.sh
- | |-- run_input_vcf.sh
- | |-- test_PGA.R

` vcf
<pre> Ref_Hsapiens_GRCh37</pre>
exon_anno.RData
hg19_refGeneCDS.fa
hg19_refGenePro.fa
ids.RData
procodingseq.RData
proseq.RData
splicemax.RData
` txdb.sqlite
TCGA-A6-3807-01A_f0106.mgf
` test.vcf
lib/
modification_list.txt
pepquery.jar
` PDV/

The file pepquery.jar is the main program of PepQuery. The data in the example folder will be used by this testing procedures. One dataset (**iPRG2015**) is from the iPRG-2015 study (http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.6b00881). The other one (**vcf**) is from the CPTAC study (<u>https://www.ncbi.nlm.nih.gov/pubmed/25043054</u>). The folder "PDV" contains the PDV software (<u>http://pdv.zhang-lab.org</u>) that can be used to visualize PepQuery results.

Firstly, in order to speed up the database searching, we can build a SQL-based index database for each reference protein database using the following command line (create_proteindb_index.sh):

Change directory to the example folder

cd example/

Please note that all the following command lines will be run in the example folder java -Xmx2G -cp ../pepquery.jar main.java.util.createProDB -db iPRG2015/iPRG2015_no6.fasta fixMod 6 -varMod 107,142,143,15 -maxVar 3 -e 1 -c 2

But please note this step is optional. It will take about 4 minutes. The description of the above parameters is listed below:

Parameter	Description
-db	A reference protein database
-fixMod	Fixed modification. Each modification is represented by a number. Please find the complete modification list in file "modification_list.txt". "6" is
	Carbamidomethylation of C.
-varMod	Variable modification. 15: Acetylation of peptide N-term; 107: Oxidation of M;
	142: Deamidation of Q; 143: Deamidation of N

-maxVar	Max number of variable modifications per peptide
-е	Enzyme used for protein digestion. 1:Trypsin (default), 2:Trypsin (no P rule),
	3:Arg-C, 4:Arg-C (no P rule), 5:Arg-N, 6:Glu-C, 7:Lys-C
-c	The max missed cleavages, default is 2

4.1 Taking a novel peptide as input

Please find the detailed description for each parameter of PepQuery here: <u>http://www.pepquery.org/document.html#saparameter</u>. Users can use "-pep" to specify the input peptide (run_input_a_peptide.sh).

java -jar -Xmx2G ../pepquery.jar -db iPRG2015/iPRG2015_no6.fasta -fixMod 6 -varMod 107,142,143,15 -maxVar 3 -cpu 4 -fragmentMethod 1 -itol 0.02 -tol 10 -ms iPRG2015/JD_06232014_sample1-A.mgf -pep AVVQDPALKPLALVYGEATSR -m 1 -minScore 10 -n 1000 -um -o out

The above search will take about less than 10 seconds. One spectrum is identified for the input peptide with cutoff of p-value<=0.01 and n_ptm==0. The final result is saved in the file out/psm_rank.txt. Users can find the description for each column of this file here: http://www.pepquery.org/document.html#saoutput.

4.2 Taking a novel protein sequence as input

Users can use "-i" and "-t" to specify a protein sequence as input (run_input_a_protein.sh):

java -jar -Xmx2G ../pepquery.jar -db iPRG2015/iPRG2015_no6.fasta -fixMod 6 -varMod 107,142,143,15 -maxVar 3 -cpu 4 -fragmentMethod 1 -itol 0.02 -tol 10 -ms iPRG2015/JD_06232014_sample1-A.mgf -m 1 -minScore 10 -n 1000 -um -o out -i MSHHWGYGKHNGPEHWHKDFPIANGERQSPVDIDTKAVVQDPALKPLALVYGEATSRRMVNNGHSFNV EYDDSQDKAVLKDGPLTGTYRLVQFHFHWGSSDDQGSEHTVDRKKYAAELHLVHWNTKYGDFGTAAQQP DGLAVVGVFLKVGDANPALQKVLDALDSIKTKGKSTDFPNFDPGSLLPNVLDYWTYPGSLTTPPLLESVTWIV LKEPISVSSQQMLKFRTLNFNAEGEPELLMLANWRPAQPLKNRQVRGFPK -t 1

The above search will take about 10 seconds. The final result is saved in the file out/psm_rank.txt. In total, 7 PSMs for 6 unique peptides are identified with cutoff of p-value<=0.01 and n_ptm==0. Users can also take a DNA sequence as input.

4.3 Taking multiple peptide sequences as input

If users have multiple novel peptides, a file with multiple peptides can be used for parameter "-pep". Below is an example (run_input_peptidelistfile.sh):

java -jar -Xmx2G ../pepquery.jar -db iPRG2015/iPRG2015_no6.fasta -fixMod 6 -varMod 107,142,143,15 -maxVar 3 -cpu 4 -fragmentMethod 1 -itol 0.02 -tol 10 -ms

iPRG2015/JD_06232014_sample1-A.mgf -pep iPRG2015/peplist.txt -m 1 -minScore 10 -n 1000 um -o out

In the input file "iPRG2015/peplist.txt", it contains 4 peptides which do not exist in the reference protein database (iPRG2015/iPRG2015_no6.fasta). Please note each row corresponds to one peptide. The content of file "iPRG2015/peplist.txt" looks like below:

LLSYVDDEAFIRDVAK AVVQDPALKPLALVYGEATSR DFPIANGER VGDANPALQK

The above search will take about 10 seconds. The final result is saved in the file out/psm_rank.txt, including 5 spectra that are confidently matched to the 4 peptides with cutoff of p-value<=0.01 and n_ptm==0. Please note that the result file (psm_rank.txt) can be visualized by PDV (http://pdv.zhang-lab.org) using the following step by step procedure:

(1). Please launch PDV by double clicking the file "PDV-1.2.beta.jar" in the "PDV" folder. The main interface is shown below:

	Welcome to PDV
	coore
75- 12 50-	71
	71 71 71 71 71 71 71 71 70 800 900 1,000 1,100 1,400 1,600 1,600
Database searching Visualize database searching result with mzidentML/pepXML/xxt format file. Accept MGF/mzXML/mzML format.	MS/MS data in Raw MS Data
کې Denovo sequencing	PRIDE PRIDE XML
Proteogenomics	ProteoQC Click to see how to use ProteoQC
One PSM	
MaxQuant	
	ics data visualization tool

(2). Click "Database searching" in the above panel, then import data and set parameters as shown below. For visualization, only two files from the PepQuery output are required. The file "psm_rank.txt" is used for "MzID File", and the file "psm_rank.mgf" is used for "Spectrum File".

		Welcome to PDV	
100- 178AQ-Q ₁ G D ₁ V ¹⁰ ₁ ¹⁰ ¹⁰ ₁ ¹⁰ ¹⁰ ₁ ¹⁰	น้ำมีสูรการน้ำมีน้ำมันในกับการบิดทีล-coon	Proteomics	Data Visualization
	O PDV	- Database Result Display	
25- 0 0 100 200	Input Files MzID File* Spectrum File *	psm_rank.txt selected 🔌 1 file(s) selected 🔌	1,500 1,600 m/s
Visualize databa mzldentML/pep.	Fragment Ion Types Fragment m/z Tolerance	b v v v 0.02 Da v	
MGF/mzXML/mz	sequencing	Start PRIDE YML	
Proteoge	enomics	ProteoQC Click to see how to use F	ProteoQC
One PSN	n		
	nt CAn integrated proteomics data	visualization tool	

(3). Click on the "Start" button in the above panel. After about 1 or 2 seconds, users will see the visualization panel as shown below:

4.4 Taking VCF/BED/GTF as input

Processing VCF/BED/GTF files is complicated. Currently, PepQuery relies on PGA (<u>http://bioconductor.org/packages/PGA/</u>) to translate the genomics information in VCF/BED/GTF to protein sequences. If users want to take VCF, BED or GTF as input, please install R (<u>https://www.r-project.org</u>) and the PGA package and the BSgenome.Hsapiens.UCSC.hg19 package

(<u>http://bioconductor.org/packages/BSgenome.Hsapiens.UCSC.hg19/</u>). Please make sure that the R environment in users' computer is compatible with PGA. Then users need to prepare annotation data according to the instruction in the manual of PGA

(<u>http://bioconductor.org/packages/devel/bioc/vignettes/PGA/inst/doc/PGA.pdf</u>). Users need to set parameters "-i", "-anno" and "-t" when they want to take VCF, BED or GTF as input.

After R, PGA and BSgenome.Hsapiens.UCSC.hg19 are installed in users' computer, please make sure that R has been added in the environment path. Please run the script test_PGA.R in example folder to make sure PGA works well in users' computer:

Rscript test_PGA.R

If the following three files are generated in the "out" folder, then it indicates PGA works well:

pga_snv.fasta pga_snv.tab pga_txFinder.fasta Below is an example to run PepQuery with taking VCF file as input (run_input_peptidelistfile.sh):

java -jar -Xmx2G ../pepquery.jar -i vcf/test.vcf -anno vcf/Ref_Hsapiens_GRCh37/ -t 3 -cpu 4 -db vcf/Ref_Hsapiens_GRCh37/hg19_refGenePro.fa -varMod 107 -fixMod 6 -tol 10 -itol 0.6 -o out - m 1 -ms vcf/TCGA-A6-3807-01A_f0106.mgf

The above search will take about 1 minutes. The final result is saved in the file out/psm_rank.txt, there is no confident match with cutoff of p-value <= 0.01.

5 Appendix

5.1 A novel peptide

LVVVGADGVGK

5.2 A novel protein

MKKFFDSRREQGGSGLGSGSSGGGGSTSGLGSGYIGRVFGIGRQQVTVDEVLAEGGFAIVFLVRTSNGMKC ALKRMFVNNEHDLQVCKREIQIMRDLSGHKNIVGYIDSSINNVSSGDVWEVLILMDFCRGGQVVNLMNQR LQTGFTENEVLQIFCDTCEAVARLHQCKTPIIHRDLKVENILLHDRKVFHELTQTDKMGAQELLR

5.3 A novel DNA sequence